If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x^2+1=113
We move all terms to the left:
x^2+x^2+1-(113)=0
We add all the numbers together, and all the variables
2x^2-112=0
a = 2; b = 0; c = -112;
Δ = b2-4ac
Δ = 02-4·2·(-112)
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{14}}{2*2}=\frac{0-8\sqrt{14}}{4} =-\frac{8\sqrt{14}}{4} =-2\sqrt{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{14}}{2*2}=\frac{0+8\sqrt{14}}{4} =\frac{8\sqrt{14}}{4} =2\sqrt{14} $
| 9(2-3x)29-8x=(x-23) | | 5=0.5a | | 17=3x-31 | | 2.5=0.5a | | 19.99+6x=25.93 | | p–9+2p=360 | | 0.5=0.5a | | 25-2y=6 | | 3(2g-4)-1=14 | | 3t-1=t+9 | | 5p=10p | | 12/p=26/45 | | 24x+48=18x−36 | | 8x-7=3x=4 | | -3+h=16 | | 9x-27+19=9x-8 | | (8w−9)+(3w−6=) | | 3+c=54 | | 2x-(-4)=-7 | | 2x+7+61+90=180 | | 3x+21=6x+42 | | d+24/27=14 | | 6x-38=5x+10-7x | | 7m+13=19π2 | | 39+2x+1=3x=13 | | (5r-1)=2(r-4)-6 | | 5(2x+4)-3x=41 | | 13x-20=10x-2 | | 17-4x=6x+47 | | 24+1/8r=-14 | | 0.25x-18=4+3x | | 138+x=x+28 |